Катодная защита кузова автомобиля от коррозии. все о ее эффективности

Компоненты защиты

Далее следует рассказать о составных частях катодной защиты автомобильного кузова от коррозии. Это те элементы, без которых ничего работать попросту не будет.

Если детально понять устройство катодной защиты от коррозии, которая применяется для кузова автомобиля, это позволит автомобилистам правильно её использовать и устанавливать на собственное транспортное средство.

В итоге защита состоит из:

  • катода;
  • анода;
  • тока.

Каждый из компонентов выполняет свою особенную роль.

Аноды и катоды

В действительности какого-то специального отдельного катода в составе схемы электрохимической защиты нет, поскольку его роль выполняет непосредственно сам кузов автотранспортного средства. Именно автомобиль является катодом и позиционируется в схеме как минус.

Что же касается анода, то тут применяют различные конструкции и элементы на основе металла. Что используются пластины, металлические изделия и прочие поверхности, главной отличительной чертой которых является способность проводить электроток. Теоретически сюда можно отнести даже промокший от дождя асфальт.

Если на автомобиле будет отсутствовать один из этих элементов электрохимической защиты, ничего не сможет функционировать. А потому предотвратить возникновение и распространение коррозии по кузову автомобиля не удастся.

Особое внимание стоит уделить вопросу разности потенциалов. У различных специалистов есть своё мнение на этот счёт

Они говорят о разности потенциалов и степени защиты, которая непосредственно зависит и определяется этим параметров.

Металл кузова якобы защищается полноценно от ржавчины в тех ситуациях, когда величина потенциалов составляет порядка 0,1-0,2 В. Но это условное значение, которое нельзя считать абсолютно справедливым и единственно верным.

На практике расстояние между катодом и анодом может составлять от нескольких сантиметров вплоть до нескольких метров. Но чем больше указанное расстояние между двумя электродами, тем выше параметры разница потенциалов должны быть. Плюс воздух не сможет проводить ток с небольшим показателем напряжения, что требует иметь разницу потенциалов на уровне 1 киловольта.

А вот что действительно важно в этом вопросе влияния на эффективность антикоррозийной защиты автомобиля, так это площадь, которую имеет установленный анод. Чем большую площадь получит этот составной элемент схемы, тем активнее сможет проявлять себя в работе катодная защита

Потому эксперты рекомендуют выбирать более внушительные аноды, монтируемые на авто, чтобы реально обезопасить машину от образования ржавчины и её активного распространения по всему кузову.

Ток

Также в схеме защиты особую роль отводят электрическому току

Тут важно понимать, что для эффективной работы катодного протектора не требуется наличие тока непосредственно между электродами, то есть катодом и анодом. Даже когда определённая сила электротока будет возникать, её стоит воспринимать исключительно как побочный эффект

Подобный ток между элементами защиты порой образуется в результате намокания анода, колёс автомобиля и пр. И проявляется электроток на аккумуляторе, что позволяет батарее разряжаться с большей скоростью, нежели это происходит обычно.

Чтобы монтаж катодной защиты на автотранспортное средство не наносил никакого вреда для самого авто, а только обеспечивалась надёжная протекция против коррозии, нужно в обязательном порядке соединить анод и бортовую систему. Делается это с помощью такого простого и дешёвого приспособления как добавочный резистор.

Используя этот резистор, удастся ограничить эффект быстрого разряжения аккумуляторной батареи в ситуациях, когда анод окажется замкнутым на катоде, то есть кузове машины. Обычно подобные ситуации возникают по причине того, что схему собрали неправильно. Это ведёт к быстрому износу анода и потере его эффективности. Вплоть до полного окисления с последующим разложением.

Если вы не уверены в собственных силах и возможностях, а также плохо разбираетесь в теории электрохимических процессов, вопрос установки лучше доверить квалифицированным специалистам. Или хотя бы проконсультируйтесь с ними, дабы не допустить ошибок.

Выбираем правильный анод

Важным моментом в процессе формирования электрохимической защиты является выбор анода. Мы рассмотрим все наиболее удачные из распространённых вариантов, чтобы вам было проще сделать свой выбор.

Металлический гараж

Это самый простой, наиболее доступный и, соответственно, самый распространённый вариант анода. А если в этом гараже ещё и пол сделан из железа или хотя бы имеется открытая арматура, то днище машины также будет защищено от пагубного влияния коррозии. В летнее время сила защиты возрастает за счёт парникового эффекта. Для формирования защиты при таком выборе анода потребуется металлический корпус сооружения (в нашем случае это гараж) соединить с плюсом на аккумуляторе. Эта батарея должна быть установлена в машине посредством резистора или провода для монтажа. Для плюса можно использовать прикуриватель, но только в том случае, если в нём сохраняется напряжение после отключения зажигания.

Контур заземления

Такой выбор анода потребует от автовладельца аналогичных действий. Но учтите, что устройство катодной защиты по большей части будет работать на днище машины. Эту ситуацию можно исправить, проделав несложную работу. В землю, по периметру расположения машины, вбивается четыре металлических стержня и соединяются они между собой обычной металлической проволокой. Подключение контура проводится по аналогии с предыдущим случаем, когда анодом служил металлический гараж.

Металлизированный резиновый хвост с эффектом заземления

Такой способ организации защиты считается самым простым, но не менее эффективным, если разговор идёт за движущуюся машину. При повышенной влажности воздуха имеет место разность потенциалов между автомобилем и влажной дорогой. По логике влияние коррозии должно усиливаться при таких условиях, но в нашем случае за счёт наличия хвоста усиливается катодная защита. Хвост обязательно должен устанавливаться сзади автомобиля. На него должна попадать влага в виде брызг, которые вылетают из-под задних колёс.

Такое приспособление выполняет ещё и роль антистатика. Хвост должен быть правильно прикреплён к машине: в изолированном положении относительно корпуса ТС по току постоянного характера, а по переменному току он должен быть «закорочен» на корпус. Такое подключение можно организовать за счёт использования RC-цепочки, которая служит элементарным частотным фильтром.

Защитные электроды-протекторы

Как отдельную тему можно рассматривать этот вид анодов, но мы постараемся уложиться в один подзаголовок. Роль защитных протекторов выполняют элементарные пластинки, сделанные из металла. Для их установки можно выбирать самые уязвимые для коррозии места в машине. Чаще всего выбираются крылья, днище и пороги. Принцип действия схож со всеми предыдущими способами.

Защита действует непрерывно и не зависит от движения машины и влажности воздуха, что выступает преимуществом. Но организация такой защиты требует больших временных затрат, ведь таких анодов нужно будет разместить не менее 15 штук.

Стоит обратить внимание на металл, из которого будут изготовлены защитные электроды. Есть два варианта:

  1. Разрушающиеся придётся менять каждые пять, а то и четыре года. Это может быть алюминий или нержавейка.
  2. Не разрушающиеся будут служить гораздо дольше, но их стоимость возрастает в несколько раз. В качестве примера можно привести карбоксил, платину, магнетит или графит.

Также нужно знать правила размещения таких анодов:

  1. Форма должна быть прямоугольной или круглой с площадью от 4 до 10 кв. см.
  2. Один такой элемент может защитить не более 35 см площади машины.
  3. Установка производится только на лакокрасочное покрытие с помощью эпоксидного клея, который не контактирует с глянцем.
  4. Пластина должна смотреть навстречу брызгам и агрессивной среде.

Защищать автомобиль необходимо — это должен понимать каждый автовладелец. Из всех способов именно катодная защита демонстрирует хорошие результаты. Есть смысл «попотеть» над организацией одного из способов защиты, чтобы в будущем не лить слёзы над проржавевшим кузовом.

5 Как выполняется катодная схема?

Температурные перепады и ультрафиолетовые лучи наносят серьезный вред всем внешним узлам и составным частям транспортных средств. Защита кузова автомобиля и некоторых других его элементов от коррозии электрохимическими методами признается весьма эффективным способом продления идеального внешнего вида машины.

Принцип действия такой защиты ничем не отличается от схемы, описанной выше. При предохранении от ржавления кузова автомобиля функцию анода может выполнить почти любая поверхность, которая способна качественно проводить электроток (влажное покрытие автодороги, металлические пластины, сооружения из стали). Катодом при этом является непосредственно корпус транспортного средства.

Элементарные способы электрохимической защиты кузова автомобиля:

  1. Подключаем через монтажный провод и дополнительный резистор к плюсу АКБ корпус гаража, в котором стоит машина. Данная защита от коррозии кузова автомобиля особенно продуктивна в летний период, когда в автогараже присутствует парниковый эффект. Этот эффект как раз и предохраняет наружные части авто от окисления.
  2. Монтируем специальный заземляющий металлизированный «хвост» из резины в задней части транспортного средства так, чтобы на него во время движения в дождливую погоду попадали капли влаги. При высокой влажности между автотрассой и кузовом автомобиля образуется разность потенциалов, которая и предохраняет наружные части ТС от окисления.

Также защита кузова автомобиля осуществляется при помощи протекторов. Их крепят на порогах машины, на днище, под крыльями. Протекторами в данном случае являются небольшие пластинки из платины, магнетита, карбоксила, графита (неразрушающиеся с течением времени аноды), а также из алюминия и «нержавейки» (их следует менять каждый несколько лет).

Катодная защита кузова от коррозии

Автовладельцу, который задумывается о хорошем состоянии и товарном виде своего автомобиля, очень важен вопрос защиты кузова от ржавчины.

Вы, скорее всего, замечали, что купить подержанный автомобиль с идеальным лакокрасочным покрытием очень трудно. Конечно, это зависит от эксплуатации и года выпуска.

В приведенной статье рассмотрена катодная защита кузова автомобиля от коррозии, этот способ также называется электрохимической защитой.

Но особенно актуальна проблема повреждения кузова в зимнее время года, когда дороги поливают химическими реагентами. Они предотвращают обледенение проезжей части, улучшая сцепление колес, но оказывают негативное влияние на лакокрасочное покрытие.

Где применяется катодная защита от коррозии?

При любой царапине или сколе на тех местах, где имеется необработанный металл, происходит химическое взаимодействие (окисление), и как результат − появление ржавчины. Как же это предотвратить?

В Японии, например, с ее мокрым морским климатом для предотвращения ржавчины автомобили обрабатывают высокими частотами. Еще есть способ оцинковки кузова, который не очень дешевый, но действенный.

В первую очередь катодную защиту используют от коррозии:

  • массивных металлоконструкций;
  • металлических опор, контактирующих с грунтовыми покрытиями;
  • морских сооружений и металлоконструкций;
  • судов;
  • трубопроводов.

Например, если газовый трубопровод, пущенный под землей, не предохранить от «повреждения», то такая труба выйдет из строя за несколько месяцев. Поэтому метод катодной защиты хорошо зарекомендовал себя не только в автомобильной, но и в других отраслях промышленности.

Катодная защита может предотвратить как полное, так и частичное разрушение металла. Она функционирует постоянно (за ней не нужно следить), поддерживая процесс восстановления «зараженной» поверхности. Также эффективно используется при различных видах коррозии, например, точечная ржавчина в виде мелких точек по поверхности.

Механизм работы катодной защиты кузова

Схема установки катодов в автомобиле

Если говорить простым языком, то кузов автомобиля станет катодом электродной пары. За анод берутся металлические поверхности, хорошо проводящие ток, а также влажный асфальт. Слабым проводником становится воздух. За счет малой разности потенциалов ржавчина появляется на аноде, а не на кузове.

Подключение катодов к аккамулятору

Очень важный момент: при катодном методе защиты используется именно разность потенциалов! Для того чтобы случайно возникший ток не расходовал заряд аккумулятора, батарея подключается к аноду через резистор, принимающий на себя ненужный заряд.

В качестве положительного полюса питания используется много вариантов, но автомобиль лучше защищен при большей площади присоединения.

4 Защита трубопроводов методом катодной поляризации

Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.

Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.

Защита трубопроводов от коррозии

Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.

Это означает, что для эффективной защиты трубопроводов требуется «передвинуть» коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).

Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.

Методика с применением источника тока

Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.

Ток-«защитник» распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.

Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.

Методики предупреждения коррозии.

Оцинковка.

Данный вид защиты, использует немалая часть производителей авто. На производстве, поверхность машины покрывают плавленным цинком. При достаточном слое цинка, методика является весьма эффективной. При нарушении металлической структуры, изначально разрушается цинковая поверхность. Этот способ профилактики, защищает авто от воздействия неблагоприятных химикатов.

Полимерная защита.

Пленка, не имеющая цвета, позволяет предотвратить появление ржавчина на поверхности машины. Данный вид защиты, является наиболее удобным и действенным. Пленка предоставляется на клейкой поверхности и легко крепиться на структуру металла. Благодаря отсутствию цвета, пленка пользуется большой популярностью. Используя данный материал, легко защитить пораженную часть автомобиля от нежелательных воздействий.

Ламинирование кузова

защита от коррозии кузова

Уберечь кузов автомобиля от абразивного износа и преждевременной коррозии можно, используя специальную полимерную пленку, которая являет собой клеящийся прозрачный материал. Ламинирование во многих случаях намного практичнее и удобнее, чем иные виды защиты: Ламинирование, часто используют для частичной защиты авто (двери, капот). Процесс нанесения пленки достаточно прост и не потребует много времени. Материал, устойчив к температурному воздействия и надежно фиксируется на поверхности. Благодаря данной методике, можно долгое время сохранять первоначальный вид авто. Данный вид защиты, часто используется перед продажей авто с небольшим пробегом. Пленка надежно защищает поверхность от появления царапин. Часть дилеров, так же используют ламинирование, для сбережения автомобиля при транспортировке.

Катодная защита.

Данная методика, предполагает использование специального устройства. Прибор, поляризует металл, создавая защитный слой. На поверхности кузова, скапливается минусовой заряд, предупреждающий ржавчину. Методика действенна определенный период. При разрушении поляризации поверхности, необходимо повторять процедуру. По этому, катодная защита, работает некоторое время. Данный метод, используется в труднодоступных местах кузова. Некоторые производители, применяют ее в области дна авто, порогов и дверей.

Барьер — защита.

Используя пластиковые элементы защиты (например — в области колес автомобиля), можно предотвратить попадание разрушающих частиц на кузов машины. Преграда, блокирует вылетающие, из под колес частицы песка и камней. Тем самым, лако красочная поверхность сохраняет свою структуру дольше. На сегодняшний день, данная защита, часто устанавливается производителем. Так же, имеется специальная (пластиковая) защита для донной части авто. Некоторые производители, используют барьеры в области стоек и других частей транспортного средства.

Грунтовка.

Один из наиболее популярный видов предупреждения ржавчины — нанесение слоя грунта. Небольшой слой грунта, наноситься между металлом и краской. Данный слой, исключает попадание влаги на металл. Защита, так же, действенна некоторое время. Предотвратить ржавчину полностью она не способна, но существенно замедляет процесс разрушения поверхности.

Защищающая краска.

защита днища

Определенное покрытие, способно не только украсить, но и защитить автомобиль. Лакокрасочное покрытие, одно из наиболее уязвимых. Во время эксплуатации автомобиля, краска постоянно разрушается

При выборе краски, необходимо обратить внимание на определенные ее параметры

Основные требования к ЛКП:

— Высокая прочность покрытия. — Стойкость к стиранию. — Совместимость с грунтом. — Безопасность для здоровья человека (малая токсичность). — Устойчивость к термическому перепаду. Фосфатная защита.

Устойчивость к ржавчине, значительно возрастает при применении фосфатной грунтовки. Данный грунт, включает в себя ряд химических элементов. Совокупность элементов, образуют тонкую защитную поверхность. В данном случае, воздействие внешних факторов, наносит меньший урон металлическому покрытию и делает его более устойчивым.

Коррозия автомобиля, сложна в устранении. Гораздо проще провести профилактику, чем бороться с появившейся ржавчиной. Выбор метода защиты, личное дело каждого автомобилиста. Не стоит экономить на защите кузова автомобиля. Ремонт и восстановление пораженного участка стоит достаточно дорого. Предотвратить нарушение структуры кузова и дорогостоящий ремонт, можно с помощью защитно слоя. Таким образом, вы значительно увеличите срок службы кузовной части авто. Не допускайте появления коррозии, а предотвращайте ее появления. Защитив свой автомобиль, вы останетесь уверенны в сохранении его внешнего вида.

Принцип действия электрохимической защиты

Рассматриваемый способ защиты кузова от ржавчины относят к активным методам. Разница между ними и пассивными способами состоит в том, что первые создают какие-либо защитные меры, не позволяющие вызывающим коррозию факторам воздействовать на автомобиль, в то время как вторые лишь изолируют кузов от воздействия атмосферного воздуха. Данная технология изначально применялась для защиты от ржавчины трубопроводов и металлоконструкций. Электрохимический метод считают одним из наиболее эффективных.

Сдвиг потенциала осуществляют с применением внешнего источника постоянного тока или путем соединения с протекторным анодом, состоящим из более электроотрицательного металла, чем защищаемый объект.

Принцип действия электрохимической защиты автомобиля состоит в том, что между поверхностью кузова и поверхностью окружающих объектов вследствие разности потенциалов между ними по цепи, представленной влажным воздухом, проходит слабый ток. В таких условиях окислению подвергается более активный металл, а другой, наоборот, восстанавливается. Именно поэтому используемые для автомобилей защитные пластины из электроотрицательных металлов называют жертвенными анодами. Однако при чрезмерном сдвиге потенциала в отрицательную сторону возможно выделение водорода, изменение состава приэлектродного слоя и прочие явления, которые приводят к деградации защитного покрытия и возникновению стресс-коррозии защищаемого объекта.

Рассматриваемая технология для автомобилей предполагает использование в качестве катода (отрицательно заряженного полюса) кузова, а анодами (положительно заряженными полюсами) служат различные окружающие объекты или установленные на автомобиле элементы, проводящие ток, например, металлические сооружения или влажное дорожное покрытие. При этом анод должен состоять из активного металла, такого как магний, цинк, хром, алюминий.


Во многих источниках приведена разность потенциалов между катодом и анодом. В соответствии с ними, чтобы создать полную защиту от коррозии для железа и его сплавов, необходимо достичь потенциал в 0,1-0,2 В. Большие значения слабо сказываются на степени защиты. При этом плотность защитного тока должна составлять от 10 до 30 мА/м².

Однако эти данные не совсем верны – в соответствии с законами электрохимии, расстояние между катодом и анодом прямо пропорционально определяет величину разницы потенциалов. Поэтому в каждом конкретном случае необходимо достичь определенного значения разницы потенциалов. К тому же воздух, рассматриваемый при данном процессе в качестве электролита, способен проводить электрический ток, характеризующийся большой разницей потенциалов (примерно кВт), поэтому ток с плотностью 10-30 мА/м² не будет проводиться воздухом. Возможно возникновение лишь «побочного» тока в результате намокания анода.

Что касается разности потенциалов, наблюдается концентрационная поляризация по кислороду. При этом попавшие на поверхность электродов молекулы воды ориентируются на них таким образом, что происходит освобождение электронов, то есть реакция окисления. На катоде данная реакция, наоборот, прекращается. Вследствие отсутствия электрического тока освобождение электронов происходит медленно, поэтому процесс безопасен и незаметен. Благодаря эффекту поляризации, происходит дополнительное смещение потенциала кузова в отрицательную сторону, что дает возможность периодически выключать устройство защиты от коррозии. Нужно отметить, что площадь анода прямо пропорционально определяет эффективность электрохимической защиты.

Принцип действия электрозащиты

Как известно из предыдущей статьи «Защита от коррозии» — потенциал защищаемого металла может быть изменен, если использовать внешний источник напряжения. Это составляет основу электрохимического метода защиты от коррозии (электрозащита).

Для того, чтобы наглядно увидеть действие электрозащиты целесообразно привести следующий эксперимент.

В стакан или небольшую стеклянную банку с раствором электролита поместите две небольшие стальные пластины. К пластинам подсоедините провода и соберите схему (см. рис. 1). Переменный резистор должен иметь сопротивление порядка 500-1000 Ом. В качестве источника напряжения 12 В можно использовать аккумуляторную батарею, или набор батареек. После того как все соединения выполнены, можно приступать к эксперименту. Левый по схеме электрод будет катодом, правый — анодом.

С помощью переменного резистора R можно изменять разность потенциалов между электродами, изменяя тем самым скорость коррозии защищаемого металла (катода). Разность потенциалов определяется с помощью вольтметра V.

При нахождении ползунка резистора в точке А разность потенциалов между электродами равна нулю, и оба металла корродируют с одинаковой скоростью. Процесс коррозии характеризуется довольно низкой скоростью и, вообще говоря, необходимо несколько дней, чтобы увидеть явные признаки ржавчины на металле.

Если передвигать ползунок резистора от точки А к точке Б, то разность потенциалов будет увеличиваться. При положительных показаниях вольтметра образуется защитный потенциал, который полностью остановит процесс коррозии катода. При этом можно будет наглядно наблюдать выделение водорода на катоде и процесс образования ржавчины на аноде. В данном случае анод, имеющий положительный потенциал, будет притягивать к себе гидроксильные группы (ОН) из раствора электролита и окислиться, а избыточные электроны под действием внешнего источника напряжения будут переходить на катод и восстанавливать его. Для увеличения скорости реакции достаточно растворить в банке с водой половину чайной ложки поваренной соли.

Теоретически, для полного прекращения коррозии, необходимо обеспечить защитный потенциал, равный стандартному электродному потенциалу защищаемого металла, который для железа равен 0,44 В. В действительности же различные включения в железо вызывают продолжение процесса коррозии. Для предотвращения этого явления необходимо дополнительно увеличить разность потенциалов между анодом и катодом.

Обращаясь вновь к экспериментальной установке, можно видеть, что с увеличением разности потенциалов резко возрастает интенсивность выделения водорода на катоде. Происходит это потому, что одновременно с увеличением разности потенциалов возрастает и ток между электродами, который и приводит к наблюдаемому эффекту.

Многочисленные исследования показали, что сила тока между электродами зависит от состояния защищаемой поверхности, в том числе от наличия защитного лакокрасочного покрытия и может изменяться от 0,05 мА (при хорошем состояние металла) до 10 мА (при нарушенном лакокрасочного покрытии) на каждый квадратный метр защищаемой поверхности. При этом максимальный защитный потенциал должен быть порядка 1В.

Основные технологии катодной защиты

Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.

Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее

Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее

1 способ

Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).

2 способ

Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).

Анодная защита кузова от корозии

О катодной защите кузова ранее писалось в здесь>>> но в этот раз немного дополним эту статью.

Ржавчина — враг номер один почти любого металла. «Рыжая чума», с завидным упорством и постоянством превращающая сотни тонн сверкающей высокосортной, легированной стали в груды коричневого порошка. Болезнь, для которой не существует преград… Но существуют лекарства и от нее: гальванические покрытия, лаки и краски, битумы и мастики — все они в принципе должны защитить металл. Но на деле все не так просто.

Очень остро проблема защиты от коррозии стоит, к примеру, перед автомобилистами. Общеизвестно, что если не принимать определенных мер, то кузов автомобиля в течение четырех-пяти лет может превратиться буквально в ржавое решето. Зачастую не помогают ни лакокрасочные покрытия, ни мастики, поскольку кузов имеет немало закрытых полостей, пазух, карманов, коробов, в которых дорожная грязь и сырость, замешанные на поваренной соли, создают великолепные условия для электрохимической коррозии. А при современной толщине автомобильного стального листа это приводит к весьма быстрому его выходу из строя.

Но от коррозии можно не только защищаться броней из лака или хрома, ее можно и обмануть, подсунув в виде приманки такой лакомый кусочек, как металл с более высоким электродным потенциалом. Электродный потенциал? А какое он, собственно, имеет отношение к коррозии металлов? Оказывается, самое непосредственное.

Если опустить в сосуд с электролитом два электрически связанных между собой металлических электрода, то один из них начнет растворяться, другой же останется в неприкосновенности. Так вот, оказывается, растворяется металл, электродный потенциал которого выше. Это свойство гальванической пары и дало возможность использовать эффект сохранения катода для предохранения от электрохимической коррозии кузова автомобиля.

Судостроители давно уже используют этот принцип предохранения внутренней части трюма от коррозии — они размещают внутри корпуса специальные металлические аноды (из металла с более высоким электродным потенциалом, чем у металла корпуса). Этот способ недавно взяли на вооружение и автомобилисты.

Для анодной защиты применяют оребренные (для увеличения поверхности) куски цинка С помощью вделанных в них постоянных магнитов они прикрепляются в наиболее труднодоступных и загрязняемых местах кузова. Электрическая связь осуществляется многожильным проводом: с помощью винтов цинковый анод подсоединяется к кузову.

На его ребрах собирается дорожная грязь, влага, поваренная соль и комплект «цинк — сталь» начинает работать так, как работает всем известный гальванический элемент. При работе такой «батареи» происходит растворение цинкового анода, катод в данном случае не расходуется.

Рис. 1. Комплект для анодной защиты кузова автомобиля: 1 — оребренный цинковый электрод, 2 — соединительный провод.

Процесс коррозии напоминает работу гальванического элемента, поскольку сталь представляет собой, в основном, сплав железа и углерода, то есть веществ с различными электродными потенциалами. При попадании на поверхность такого сплава электролита между молекулами железа и углерода начинает идти электрохимическая реакция, сопровождающаяся растворением анода (железа) и переходом его в гидраты, а затем и в окислы.

Рис. 2. Установка электрода в колесной нише.

Присутствие же электрически связанного с основным металлом цинкового электрода в корне меняет картину. По отношению, как к железу, так и к углероду цинк представляет собой металл с более высоким электродным потенциалом, то есть выступает в роли анода. Поэтому при наличии электропроводной среды, которая практически всегда присутствует на поверхностях автомобильного кузова, электрохимическая реакция идет с растворением анода (цинка), при сохранении катода, то есть металла кузова.

Рис. 3. Установка электродов в этих точках наиболее эффективна:

1 — коробчатые усилители брызговиков, 2 — места крепления корпусов фар и подфарников, 3 — нижняя часть передней панели, 4 — полости за щитками-усилителями передних крыльев, 5 — внутренние поверхности дверей, 6, 7 — передняя нижняя часть заднего крыла и арка колеса по стыку с крылом, 8 — фартук задней панели. Как показали эксперименты, цинкового электрода величиной со спичечную коробку хватает на 3-5 лет.

Обманите «рыжую чуму». Подсуньте ей приманку — кусочек металла с электродным потенциалом выше, чем у стали. Коррозия охотно вцепится в него, забыв про кузов вашего автомобиля как минимум на три год.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Авто-мото
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: