Описание проблемы
В общем был ужасный ливень, лужи на дорогах, во дворах вообще потопы.
Сильный дождь мог повлиять на работу электронных систем автомобиля
Но надо было ехать, жена и дочка были в торговом центре, а очередь на маршрутку с их слов была огромная. Склоняюсь к тому, что маршрутки просто заглохли ( у нас в городе старые дряхлые Газели).
Есть у нас одно место, его постоянно заливает. Смотрю, а там новые Киа Сид плывут по решетку радиатора в воде, ну я то выше, думал, что ничего не случится. Тут как назло ещё красный свет светофора, а перекрёсток прямой, только пешеходный переход, на котором вообще никого нет, так как он по колено в воде. Народ в основном его проезжает даже на красный, потихонечку. А я только месяц за рулём, нарушать ещё не привык. Остановился.
Засвистел ремень от попадания воды
Стоит моя Гранта, ждёт зеленого, и тут начал свистеть ремень генератора, как-будто проскальзывает. Смотрю напряжение на бортовом компьютере прыгает, с 13 Вольт до 11.8, а под капотом свист стоит. Загорелся зеленый и я поехал. Тронулся, выехал из лужи, газанул чуток и свист пропал. Напряжение на экране бортового компьютера выровнялось до 13,6.
Из потребителей тока у меня горели фары, обогрев заднего стекла, работал потихонечку магнитофон, и включена печка на второй скорости на обдув лобового стекла.
Добрался я до торгового центра, остановился, жду жену и дочку. Двигатель начинает вибрировать, подтравливать чуток. Домой поехал уже объездной, там меньше луж. Высадил всех, и решил ехать в гараж.
Завёл двигатель, обороты прыгнули до 6000, я аж испугался. Потом упали на 1000, двигатель чихнул и заглох. На панели загорелся значок «проверьте двигатель». Завёлся повторно, холостой ход держит, но нажатие педали газа не реагирует. Пробую тронуться, на холостом едет, на педаль при движении не реагирует вообще. Так доехал до гаража на второй скорости, хорошо двигатель 21116 приёмистый и едет как трактор.
В гараже повторил эксперимент. Завёлся, попробовал нажать на педаль газа, ничего не вышло, обороты стоят как влитые, значок с двигателем всё ещё горит.
Как я решил проблему отказа педали газа
- Перекурил и решил сбросить клемму с аккумулятора.
- Сбросил, подождал пять минут. Выругался, что забыл диагностический адаптер дома.
- Подсоединил клемму обратно, завёл.
- «Джеки Чан» гореть перестал, на педаль газа двигатель реагирует бодрым поднятием оборотов. Двигатель правда не заводился сначала, завёлся только со второго раза.
Выехал с гаража, дал круг по линии бокса, вернулся обратно. Признаков поломки как не бывало. Теперь боюсь ездить в дождь.
Что это могло быть? Теперь на подсознании боюсь, что заведу двигатель, и моя Лада Гранта не захочет никуда ехать в дождливую погоду. С какой вероятностью может повториться данная ситуация?
Особенности дроссельного узла Лада Гранта
Дроссельную заслонку поворачивает электродвигатель через редуктор. Оба встроены в корпус дроссельного узла. При запуске и прогреве двигателя, а также в режиме холостого хода поступление воздуха в цилиндры регулируется открыванием дроссельной заслонки. Положение дроссельной заслонки контролируют два датчика, встроенные в корпус дроссельного узла.
Угол открытия дроссельной заслонки задает электронный блок управления (ЭБУ) в зависимости от расчетного количества воздуха, которое должно поступить в цилиндры двигателя. При этом учитывается режим работы двигателя (запуск, прогрев, холостой ход и так далее), температура окружающего воздуха и двигателя, положение педали газа.
Управляющие команды поступают в дроссельный узел на электродвигатель. Одновременно ЭБУ контролирует угол открытия заслонки и, при необходимости, подает соответствующие команды для корректировки ее положения. В результате того, что ЭБУ одновременно регулирует количество впрыскиваемого топлива и поступающего воздуха, поддерживается оптимальный состав горючей смеси при любом режиме работы двигателя.
Дроссельный узел с электроприводом дроссельной заслонки чувствителен к отложениям, которые могут накапливаться на его внутренней поверхности. Образовавшийся слой отложений может помешать плавному движению дроссельной заслонки, подклинивая ее (особенно при малых углах открытия). В результате двигатель будет неустойчиво работать и даже глохнуть на холостом ходу, плохо запускаться, могут появиться провалы и на переходных режимах. Чтобы избежать этого в качестве профилактической меры следует удалять отложения специальными моющими составами при выполнении очередного технического обслуживания автомобиля. Большой слой отложений может совсем заблокировать движение заслонки. Если промывкой не удастся восстановить работоспособность дроссельного узла, то необходимо его заменить.
Регулировка заслонки
Для того чтобы дроссельная заслонка работала как часы, ее датчик периодически нужно подстраивать. Для этого выполняется несколько простых действий:
- Отключается зажигание, дабы перевести клапан в положение закрыто.
- Обесточивается разъем датчика.
- Регулируется датчик, при помощи щупа размером 0,4 мм, расположенным между винтом и рычагом.
Для проверки исправности датчика измеряется уровень напряжения с помощью омметра. Если напряжение обнаружено — датчик следует заменить. При обратной ситуации можно продолжать регулировать датчик.
Как известно, топливная система автомобиля — это его жизнеспособность. Если она хоть немного нарушена, машина может вас неприятно удивить в самый неподходящий момент. Если из строя выйдет дроссельная заслонка или другой элемент узла, то последствия могут быт плачевными. Поэтому куда лучше, не скупиться на автомобильную диагностику, при возникновении малейших подозрений на неисправность. Помните — безопасность на дороге превыше всего.
Маркировка малогабаритных устройств
Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.
На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.
Таблица цветовой маркировки
Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.
Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.
Что такое дроссель?
Деталь используется при составлении электроцепи для предотвращения нагрева и перегрузки. Катушка индуктивности задерживает влияние тока, при этом резкие перепады исключаются из-за закона самоиндукции. Так создается дополнительное напряжение.
Дроссель состоит всего из 4 элементов:
- проволоки, которая закрепляется в изоляции;
- сердечника, материал для него подбирают отталкиваясь от применения устройства;
- заливочной массы, в которую входят вещества, не поддающиеся горению, так обеспечивается дополнительная изоляция;
- корпуса, его делают из термоустойчивого материала.
Электронный дроссель похож на железный трансформатор, отличается он обмоткой. Сердечник состоит из стали, а пластины располагаются так, чтобы они не соприкасались друг с другом. Индуктивность достигает 1Гн, катушка ограничивает резкие скачки тока в цепи. Если уровень снижается, то деталь поддерживает его на минимальных показателях, а при сильном повышении дроссель в устройстве ограничивает скачок. Элемент также используется для сглаживания, отделения определенных участков схемы, накапливания энергии и устранения помех.
Разбираясь в том, что такое дроссель, стоит уточнить, что его в основном ставят для сбора энергии и задержки тока в выбранном диапазоне. Некоторые виды люминесцентных ламп неспособны работать без такой детали. Это относится к уличным фонарям и домашним светильникам. Дроссель в контакте с ними выступает ограничителем, который передает электроды на лампу.
Созданные по этому принципу механизмы формируют напряжение, оно нужно для получения разряда. После этого загорается лампа. Процесс протекает настолько быстро, что напряжение создается всего через несколько долей секунды, без детали невозможна стабильная работа и включение предмета.
Расчет дросселя
В методиках расчета дроссель-трансформатора применяются методы нечеткой логики, нейронных сетей, резольвента Ла-Гранджа и т. д. Современные программы позволяют вычислить необходимые параметры прибора всего за несколько минут. Весь процесс расчета состоит из таких этапов:
- Вводятся необходимые данные (точки кривой намагничивания, материал сердечника и т. д.).
- Далее программа выдает данные о кривой намагничивания, корректирует значения и ошибки.
- Система подсчитывает геометрические параметры модели сердечника.
Воздушный зазор в приборе можно рассчитать самостоятельно, используя при этом формулу:
L•I 2/V, где:
L – индуктивность обмотки дросселя, Гн;
I – сила постоянного тока, проходящего по обмотке, А;
V – объем железного сердечника.
Величина ∂, которая необходима для подсчета зазора стального сердечника, находится по специальной номограмме.
Например, при условиях, что L = 20 Гн, I = 60 мА, V = 40 см 3, то
L•I 2/V= 10•3600•10-6/40 = 9•10 -4.
По номограмме определяется значение ∂ = 20•10-3= 0,2 мм.
Исходя из этого, зазор с каждой стороны должен составлять по 1 мм.
Как изготовить дроссель самостоятельно?
Для того чтобы самостоятельно сделать из дросселя трансформатор, необходимо подсчитать количество витков на вольт для имеющегося сердечника. Затем дроссель аккуратно разбирается и производится процесс обмотки будущего трансформатора. При сборке следует учитывать, что зазор, который присутствовал в дросселе до разборки, следует устранить.
Также можно изготовить трансформатор из дросселей. Количество используемого материала напрямую зависит от предназначения изобретения.
Технологический процесс замены дроссель-трансфоматора
Переустановка и снятие дроссель-трансформатора производится в следующем порядке:
- После получения разрешения на поведение работ снимается электропитание.
- Далее демонтируется защитный кожух.
- После проведения вышеописанных операций следует освободить от грунта изолирующую трубу ввода кабеля и очистить запас кабеля.
- Далее откручиваются гайки болтов крепления и снимается крышка кабельной стойки.
- Затем отсоединяются кабельные жилы и вытягивается кабель из стойки изоляционной трубы.
Установка электротяговых соединителей в обход производится в следующем порядке:
- Демонтируется по одному соединению штепсель-перемычки дросселя и рельс по обеим сторонам изолирующих стыков, для чего на каждом из них следует открутить и снять контргайку, гайку открутить до конца резьбы, выбить штепсель из рельса, отсоединить перемычку от рельса.
- В освободившиеся отверстия установить штепсели соединителей. Накрутить на них гайки и закрепить их до упора.
Установка и монтаж дроссель-трансформатора производится в порядке, обратном демонтажным работам.
Важно! Перед установкой следует внимательно ознакомиться с инструкцией и порядком проведения работ. Необходимо учитывать место установки дросселя (на питающем конце либо на секциях) в зависимости от его разновидности и назначения
Как проверить дроссель мультиметром
Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.
Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.
Функция измерения индуктивности есть далеко не во всех мультиметрах
Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.
Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.
Так можно проверить исправность дросселя для ламп дневного света
Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.
Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.
Для чего нужен дроссель?
Таким образом, главное назначение дросселя в электрической схеме — задержать на себе ток определенного частотного диапазона или накапливать энергию за определенный период времени в магнитном поле.
Физически ток в катушке не может измениться мгновенно, на это требуется конечное время, — данное положение прямо следует из Правила Ленца. Если бы ток через катушку мог изменяться мгновенно, то на катушке при этом возникало бы бесконечное напряжение. Самоиндукция катушки при изменении тока сама формирует напряжение — ЭДС самоиндукции. Таким образом, дроссель задерживает ток.
Если необходимо подавить переменный компонент тока в цепи (а помехи или пульсации — это как раз пример переменной составляющей), то в такую цепь устанавливают дроссель — катушку индуктивности, обладающую для тока частоты помех значительным индуктивным сопротивлением.
Пульсации в сети существенно снизятся, если на пути установлен дроссель. Таким же образом можно развязать или изолировать друг от друга сигналы различной частоты, действующие в цепи.
В радиотехнике, в электротехнике, в СВЧ-технике, — используются высокочастотные токи от единиц герц до гигагерц. Низкие частоты в пределах 20 кГц относятся к звуковым частотам, затем следует ультразвуковой диапазон — до 100 кГц, наконец диапазон ВЧ и СВЧ — выше 100 кГц, единицы, десятки и сотни МГц.
Низкочастотный дроссель похож с виду на железный трансформатор, с тем лишь отличием, что обмотка на нем всего одна. Катушка навита на сердечник из трансформаторной стали, пластины которого изолированы между собой дабы снизить вихревые токи.
Такая катушка обладает высокой индуктивностью (более 1 Гн), она оказывает значительное противодействие любому изменению тока в электрической цепи, где она установлена: если ток резко стал убывать — катушка его поддерживает, если ток начал резко возрастать — катушка станет его ограничивать, не даст резко нарасти.
Одна из широчайших сфер применения дросселей — это высокочастотные схемы. Многослойные или однослойные катушки навиваются на ферритовые или стальные сердечники, либо используются совсем без ферромагнитных сердечников — просто пластмассовый каркас или только проволока. Если схема работает на волнах среднего и длинного диапазона, то возможно часто встретить секционную намотку.
Дроссель с ферромагнитным сердечником имеет меньшие габариты, чем дроссель без сердечника той же индуктивности. Для работы на высоких частотах используют сердечники ферритовые или из магнитодиэлектрических составов, отличающихся малой собственной емкостью. Такие дроссели способны работать в довольно широком диапазоне частот.
Как вы уже поняли, основной параметр дросселя — индуктивность, как и у любой катушки. Единица измерения данного параметра — генри, а обозначение — Гн. Следующий параметр — электрическое сопротивление (на постоянном токе), оно измеряется в омах (Ом).
Затем идут такие характеристики, как допустимое напряжение, номинальный подмагничивающий ток, и конечно добротность, — крайне важный параметр, особенно для колебательных контуров. Различные типы дросселей находят сегодня самое широкое применение для решения самых разнообразных инженерных задач.
Применение дросселей
Итак, по назначению электрические дроссели подразделяются на:
Дроссели переменного тока, работающие во вторичных импульсных источниках питания. Катушка накапливает энергию первичного источника питания в своем магнитном поле, затем отдает ее в нагрузку. Обратноходовые преобразователи, бустеры — в них используются дроссели, причем иногда с несколькими обмотками, как у трансформаторов. Аналогичным образом работает магнитный балласт люминесцентной лампы, служащий для ее розжига и поддержания номинального тока.
Дроссели для пуска двигателей — ограничители пусковых и тормозных токов. Это эффективнее, чем рассеивать мощность в форме тепла на резисторах. Для электроприводов мощностью до 30 кВт такой дроссель по внешнему виду напоминает трехфазный трансформатор (в трехфазных цепях используются трехфазные дроссели).
Дроссели насыщения, применяемые в стабилизаторах напряжения, и феррорезонансных преобразователях (трансформатор частично превращается в дроссель), а также в магнитных усилителях, где сердечник подмагничивается с целью изменения индуктивного сопротивления цепи.
Сглаживающие дроссели, применяемые в фильтрах для устранения пульсаций выпрямленного тока. Источники питания со сглаживающими дросселями были очень популярны в период расцвета ламповых усилителей из-за отсутствия конденсаторов с очень большой емкостью. Для сглаживания пульсаций после выпрямителя должны были использоваться именно дроссели.
Потенциометр
Иными словами, потенциометр изменяет угол открытия заслонки и тем самым воздействует на контроллер. При закрытой заслонке напряжение не превышает 0,7 В, а при полном открытии достигает 4В. Так и происходит контроль подачи топлива.
Если дроссельная заслонка перестала реагировать на импульсы, исходящие от датчика положения, могут возникнуть такие поломки как:
- Плавающие обороты при работе двигателя. Повышенные обороты холостого хода;
- Глохнет двигатель, при переключении на нейтральную передачу;
- Неконтролируемый расход топлива;
- Двигатель работает вполсилы;
- Горит лампочка CHEK- проверьте, правильно ли работает дроссельная заслонка.
Чистка датчика/регулятора холостого хода(ДХХ) инструкция Шевроле Авео
ПРОБЛЕМЫ ДРОССЕЛЬНОЙ ЗАСЛОНКИ Chevrolet Aveo Т300, OPEL ASTRA J
Чистим впускной колектор- брызгаем с болоника и протираем тряпками везде где достанит рука.
Вот что вытащил я Посадочное место имелло вот такой вид Вид впускного колектора внутри.
Если дроссельный узел снимали не для замены, очистите загрязненный дроссельный узел жидкостью для чистки карбюратора. Сдвиньте пружинный фиксатор наконечника шланга системы вентиляции картера двигателя
Поэтому при данных неисправностях сначала попробуйте промыть дроссельную заслонку например, растворителем или специальным очистителем карбюратора в аэрозольной упаковке.
Если это не приведет к положительному результату, замените дроссельный узел. Слейте жидкость из системы охлаждения двигателя см. При известном навыке охлаждающую жидкость можно не сливать. Приготовьте подходящие по размеру пробки, которыми заглушите шланги сразу же после их отсоединения.
Потеря охлаждающей жидкости при таком способе будет незначительной. Ослабьте затяжку хомута крепления воздухоподводящего рукава к патрубку дроссельного узла и снимите рукав с патрубка.
Чистка Дроссельной Заслонки . Ее обучение после чистки.
Сдвиньте пружинный фиксатор наконечника шланга системы вентиляции картера двигателя Ослабьте хомут крепления шланга слива охлаждающей жидкости Для наглядности работа здесь и далее показана на снятой головке блока цилиндров.
Сожмите фиксатор наконечника шланга подвода охлаждающей жидкости После снятия шланга проверить его на загрезненность — уж больно быстро забивается 6.
Самый тонкий шланг который идёт во впускной коллектор, снимаем в месте соединения с колектором. Он там просто натянут на штуцер, но снимается тяжело. Так вот, все эти шланги очищаем , промываем и продуваем Для промывки я взял такой вот болончик для очистки карбюраторов -очень хорошо чистит, обязательно чтоб с балоном была тонкая трубочка Теперь находим РХХ, он чёрный пластиковый, расположен на впускном колекторе.
Откючаем от него разъём. И главное не потеряйте винтики.
Когда открутите винтики острожно вытаскивайте реле с посадочного места, там должно быть резиновое уплотняющее колечко, его тоже нужно вытащить. Вот что вытащил я Посадочное место имелло вот такой вид Вид впускного колектора внутри.
Интересно как почистить его в середине? Вот такой вид стал после снятия деталей Теперь берём много тряпок , болон для промывки, можно ещё взять бензин и другие моющии житкости которые моют, но не уничтожают деталь.
Берём РХХ акуратно моем ,протираем, продуваем. Много жидкости на него не брызгаем, бо может захлебнутся и умереть.
Положение дроссельной заслонки на холостых оборотах
Какие должны быть показания положения ДЗ на оборотах холостого хода?
Разные! Почему?
Этот параметр в большей степени относится к ярым фанатикам чистки дроссельной заслонки каждую неделю, а то и через день.
Существует два основных способа управлять оборотами холостого хода при помощи РХХ (регулятор холостого хода)
Именно управлять оборотами хх! А не поддерживать обороты хх! Это очень важно!. Так вот:. Так вот:
Так вот:
- При помощи регулятора холостого хода, установленного в байпасном канале
- При помощи регулятора холостого хода, управляющего непосредственно дроссельной заслонкой
И та, и другая система встречается на разных автомобилях. Даже Шевроле Лачетти использует разный способ регулировки холостого хода. На двигателях 1,4л и 1,6л используется второй метод, а на двигателях 1,8 используется первый метод.
Этот параметр в диагностике обзывается, как «Шаги РХХ» или «Положение ДЗ Шаг». Это более подробно мы рассмотрим в одной из будущих статей, а сейчас кратко объясню в чём заключается принципиальная разница этих двух способов. Это необходимо для понимания диагностики положения дроссельной заслонки.
Как мы уже знаем, все процессы в двигателе начинаются с подачи воздуха. Подачей воздуха мы можем регулировать обороты двигателя в разных режимах. То же самое происходит и при регулировке оборотов холостого хода. Подавая определённую массу воздуха, мы регулируем обороты хх в нужных пределах.
Примечание! Регулятор холостого хода осуществляет грубую регулировку оборотов хх (порядка +/- 50 об/м. После этого более точно обороты хх регулируются посредством изменения УОЗ
Но это тема другой статьи и сейчас это не столь важно
Так вот, в первом случае заслонка полностью закрывается, а необходимый для холостого хода воздух, подаётся в обход дроссельной заслонки по специальному каналу. В этом канале находится специальный клапан-регулятор, который регулирует массу воздуха, проходящую через этот канал.
А во втором случае подача воздуха осуществляется через саму дроссельную заслонку. Заслонка приоткрывается/прикрывается при помощи электродвигателя и через неё проходит необходимая масса воздуха для работы двигателя на холостом ходу.
То есть, очевидно, что в первом случае при работе двигателя в режиме холостого хода правильные значения положения ДЗ будут равны нулю! Так как воздух идёт не через дроссельную заслонку, а через специальный канал РХХ.
А во втором случае при работе двигателя в режиме холостого хода правильные значения положения ДЗ будут равняться нескольким процентам (градусам). Равняться нулю показания не могут, так как если заслонка закроется полностью, тогда двигатель заглохнет.
Вот у нас уже получился первый вывод. Вот его суть.
Чтобы правильно диагностировать положение дроссельной заслонки, первым делом необходимо определить, как осуществляется регулировка оборотов холостого хода на этом конкретном автомобиле. Если по первому способу — тогда положение ДЗ на холостом ходу должно быть равно 0%! А если по второму способу — тогда несколько процентов!
Примечание: Во всех сферах нашей жизни встречаются исключения. Тут тоже. Например, Лачетти 1.8 ЛДА хоть и имеет отдельный регулятор холостого хода, но положение дроссельной заслонки на холостом ходу составляет 10-11%
В первом случае всё просто и понятно. Если значения отличны от нуля, значит либо дроссельная заслонка не может плотно закрыться из-за грязи или ещё чего-то, либо датчик положения дроссельной заслонки показывает не правду, что означает его износ и поломку.
А вот во втором случае не всё так однозначно.
Бытует мнение, что если открытие ДЗ составляет более 5%, тогда необходима обязательная чистка этой самой заслонки. Это так, но со множеством нюансов.
И самые главные из них — это те, о которых мы уже говорили выше:
- регулятор холостого хода не поддерживает холостой ход, а регулирует его
- нагрузка на двигатель высчитывается по расходу воздуха (давлению в коллекторе). Чем больше масса потребляемого воздуха — тем больше нагрузка. И наоборот, чем больше нагрузка на двигатель, тем больше ему необходимо воздуха.
Применение дросселя
Индуктивность нашла широкое применение в большом разнообразии приборов электротехники, автоматики, радиотехники. Дроссели работают в виде различных электрических фильтров, преобразователей электрической энергии, разных типов электромагнитных реле, а также трансформаторов. Если же конденсатор выполняет накопительную функцию электрического заряда, то индуктивность накапливает электромагнитную энергию. Вот зачем нужен дроссель.
Посредством прохождения электричества по проводу происходит образование постоянного магнитного поля. Это зависит от количества витков: чем их больше на дросселе и больше проходящего через него количества тока, тем сильнее становится магнитное поле элемента. Чтобы увеличить мощность электрического магнита, в прибор следует встраивать ферромагнитный сердечник. Способность дросселя вырабатывать магнитное поле зачастую применяется в электромагнитах, имеющих большую мощность, в различных электромеханических реле, электродвигателях, а также генераторах.
Дроссельная катушка пропускает постоянный электроток с минимальным сопротивлением, но если проходит ток переменной частоты, оказывает большое сопротивление, то есть выступает в роли фильтра. Эта способность, которая называется индуктивностью, применяется для того, чтобы отделить цепь переменной частоты от цепи постоянной частоты тока. Дроссель с наличием стального сердечника применяется в фильтрах блоков питания сетевых выпрямителей, чтобы сглаживать пульсацию переменного тока.
Под воздействием на катушку переменного магнитного поля в ней происходит образование переменного электротока. Это индуктивное свойство применяется в электрических генераторах с постоянным и переменным током.
В них преобразуется механическая энергия в электрическую:
- гидроэлектростанциями используется энергия падающей воды;
- генераторы, работающие на жидком топливе, при сжигании бензина или дизеля вырабатывают электричество;
- тепловые электростанции в качестве топлива используют уголь или же природный газ;
- в атомных электростанциях механическая энергия получается благодаря нагреву воды.
В этом случае катушка выполняет функции трансформатора, который служит для выравнивания сопротивления нагрузки с внутренними сопротивлениями прибора, вырабатывающего электроэнергию. Трансформаторы применяются во всех отраслях электросвязи, всяческих автоматизированных системах, радиотехнике, различной электронике и т. д.
Как рассчитать межвитковую ёмкость обмотки дросселя?
В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя.
Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров. Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой. Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки.
Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2
Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы
где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = εεr,
εr – относительная диэлектрическая проницаемость,
ε – электрическая постоянная, ε = 8,85 * 10-12 Ф/м,
r – радиус поперечного сечения провода,
а – расстояние между магнитопроводом и осью провода,
n – число витков в слое,
р1 – периметр витка внутреннего слоя обмотки.
Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности.
Емкость между слоя обмотки так же вычисляется по эмпирической формуле
где рср – периметр среднего витка обмотки,
b – расстояние между осями витков в соседних слоях,
m – число слоёв.
В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции.
Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости.
Как устранить проблему
Если вы заподозрили, что дроссельная заслонка неисправна — нужно проверить весь узел, куда она крепится. Для этого точно соблюдайте следующий алгоритм:
- Отсоединить аккумуляторную минусовую клемму.
- Необходимо слить жидкость из системы охлаждения.
- Откинуть шланги от дроссельного узла.
- Убрать трос привода заслонки.
- Освободить потенциометр от колодок и регулятора холостого хода.
- Снять дроссельный узел.
- Проверить в каком состоянии прокладка дроссельной заслонки и остальные элементы узла.
- При необходимости заменить некоторые составляющие или же весь узел.
- Собрать конструкцию в обратном порядке.
После того, как вы установили узел на место, необходимо проверить герметичность системы охлаждения, куда вы снова залили жидкость. Не должно быть капель и потеков.