Поршень двигателя: конструктивные элементы, признаки и причины их износа

Поршень выполняет ряд важных функций:

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях – при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы – термостойкие алюминиевые или стальные сплавы

Поршни изготавливаются двумя методами – литьем или штамповкой.

Указания по смазке автомобиля ЗИЛ-431410

Техническое обслуживание автомобиля предусматривает применение только тех масел и смазок, которые рекомендованы заводом.

Срок службы автомобиля в большой степени зависит от своевременного и правильного проведения операции смазки, а также от сортов, качества и чистоты применяемых масел.

При применении для линейных двигателей масел с присадками cрок службы таких масел может быть увеличен (по километражу пробега) примерно в 1,5 раза. Применение для V – образных двигателей масел без присадок не допускается.

Точное выполнение всех указаний по смазке автомобилей является обязательным. Применение масел и смазок, не указанных в таблице, а также нарушение сроков смазки не допускаются. В таблицах смазки наряду с основным маслом даются наименования масел-заменителей. Использование заменителей снижает долговечность агрегатов, а также увеличивает трудовые затраты на их замену, так как срок их службы в агрегатах меньше.

Поршень двигателя

Устройство и работа двигателя

Поршень представляет собой металлический стакан, установленный в цилиндре с некоторым зазором. При рабочем ходе поршень днищем воспринимает давление газов, а при других ходах осуществляет вспомогательные такты. Верхняя усиленная часть поршня, воспринимающая давление газов, называется головкой, а нижняя направляющая часть — юбкой. Приливы в стенках юбки, служащие для установки поршневого пальца, называются бобышками.

Поверните порты цилиндров и зачистите внутренние отверстия, насколько сможете, используя прекрасный швейцарский шаблонный файл. Завершите внутреннюю часть поршня, затем сверлите и потяните за штифт для запястья. Поместите этот поршень до тех пор, пока коронка не пройдет верхнюю часть выпускного отверстия, а затем застрянет в конусе когда гильза подталкивается вручную на поршень, установленный на оправки. Это все!

  • Отверните цилиндр от нижнего отверстия, достигнув наилучшего завершения.
  • Не поддавайтесь соблазну попытаться потянуть за цилиндр.
  • Не останавливайтесь, поскольку любые глубокие царапины нужно отточить.

Задача по физике — 475

ГЛАВНАЯ » РЕШЕБНИК

2014-06-01   В расположенном горизонтально цилиндре (рис.) слева от закрепленного поршня находится 1 моль идеального газа. В правой части цилиндра вакуум, а пружина, расположенная между поршнем и стенкой цилиндра, находится в недеформированном состоянии. Цилиндр теплоизолирован от окружающей среды. Когда поршень освободили, объем, занимаемый газом, увеличился вдвое. Как изменится температура газа и его давление? Теплоемкости цилиндра, поршня и пружины пренебрежимо малы.

Решение:Согласно первому закону термодинамики количество теплоты $Q$, сообщенной газу, равно сумме изменения внутренней энергии газа $\Delta U$ и совершенной им работы $A$:
$Q= \Delta U +A$. (1)
Но в данном случае сосуд теплоизолирован и $Q = 0$. Следовательно,
$\Delta U +A =0$. (2)
Пусть вначале температура газа была $T_{1}$, давление $p_{1}$ и объем $V_{1}$, а после того, как поршень освободили и установилось равновесие, параметры газа приняли значения $T_{2},p_{2}$ и $V_{2}$, причем $V_{2} = 2V_{1}$ (по условию).
Так как внутренняя энергия идеального газа пропорциональна его температуре, то ее изменение пропорционально изменению температуры газа:
$\Delta U = c_{v} \nu (T_{2}-T_{1})$, (3)
где $c_{v}$ — молярная теплоемкость газа при постоянном объеме, $\nu$ — число молей газа.
Далее, работа, совершенная газом, равна изменению потенциальной энергии деформированной пружины:
$A=\frac{kx^{2}}{2}$, (4)
где $x$ — смещение поршня.
Выразим величину $\frac{kx^{2}}{2}$ через параметры газа. Так как после установления равновесия поршень находится а покое, то сила упругости пружины $F = kx$ равна силе давления газа $p_{2}S$:
$kx=p_{2}S$, (5)
где $S$ — площадь поверхности поршня.
Давление же газа связано с его температурой уравнением газового состояния:
$p_{2}V_{2} = \nu RT_{2}$. (6)
Так как объем газа при его расширении увеличился вдвое, а изменение объема газа равно $Sx$, то $V_{2}=2Sx$ и, следовательно,
$2 p_{2}Sx = \nu RT_{2}$

(7)
Принимая во внимание соотношения (5) и (7), имеем:
$kx = \frac{\nu RT_{2}}{2x}$, (8)
или
$kx^{2}= \frac{\nu RT_{2}}{2}$.
Таким образом, работа, совершенная газом, равна
$A=\frac{kx^{2}}{2}=\frac{\nu RT_{2}}{4}$. (9)
Подставим это выражение и выражение (3) для $\Delta U$ в равенство (2):
$c_{v} \nu (T_{2}-T_{1})+ \frac{1}{4} \nu RT_{2} = 0$.
Отсюда
$T_{2}=T_{1} \frac{1}{1+\frac{1}{4} \frac{R}{c_{v}}}$

(10)
Следовательно,
$T_{2} Теперь можно найти, как изменится давление газа. Так как $V_{1} = \frac{1}{2} V_{2}$, то согласно уравнению газового состояния
$p_{1} \frac{V_{2}}{2} = \nu RT_{1}$. (11)
Разделив это равенство на равенство (6), получим:
$\frac{p_{1}}{p_{2}}=2 \frac{T_{1}}{T_{2}}=2 \left ( 1 + \frac{1}{4} \frac{R}{c_{v}} \right )$,
или
$p_{2}= \frac{p_{1}}{2 \left ( 1 + \frac{1}{4} \frac{R}{c_{v}} \right )}$
Давление тоже уменьшилось.

Что такое поршень двигателя внутреннего сгорания автомобиля?

Устройство детали включает в себя три составляющие:

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

Днище

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

Уплотняющая часть

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.

Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Вас также заинтересует:

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Материалы для поршней

К материалам, применяемым для изготовления поршней автомобильных двигателей, предъявляются следующие требования: 1) высокая механическая прочность и стабильность ее показателей при повышенной температуре и переменных нагрузках; 2) малая плотность; 3) хорошая теплопроводность; 4) малый коэффициент линейного расширения; 5) стойкость против коррозии; 6) высокие антифрикционные свойства при повышенной температуре и плохой смазке;7)небольшаястоимостьихорошаяобрабатываемость. Для изготовления поршней применяют серый и ковкий чугун следующих марок: СЧ 24-44, СЧ 28-48, СЧ 32-52. Из легких алюминиевых сплавов наибольшее применение получили сплавы АЛ1, АК2, АК4, ЖЛС. В качестве материала для вставок под первое компрессионное кольцо применяются низкоуглеродистая сталь или чугун.

В последние годы ведутся работы по применению для поршней жаропрочных сталей, которые позволяют получить прочную конструкцию при наименьшей массе, так как стенки юбки могут быть сделаны достаточно тонкими. Основными недостатками такой конструкции являются: повышение стоимости обработки поршня и увеличение износа гильзы цилиндра.

Все поршни подвергаются термической обработке (закалке и старению или только старению). Твердость поршней из алюминиевых сплавов колеблется в пределах НВ 90—120.

Для сокращения периода приработки пары поршень — стенка цилиндра боковую поверхность поршня покрывают легкоплавкими металлами (лужение с толщиной покрытия0,005—0,002мм).

Источник

Требования

ГОСТ 6540-68 определяет ряд нормальных значений для диаметров поршня – от 10 до 800 мм (в исключительных случаях до 900 мм). На практике гидроцилиндры с полостью свыше 300 мм встречаются крайне редко.

Рабочая контактная поверхность поршня выполняется с полем допуска f7, а в случае установки направляющих колец – на 0,5 мм меньше диаметра полости. Биение цилиндра относительно отверстия под установку штока должно быть не более 0,03 мм, тогда как точность самого отверстия ограничивается полем допуска H8. Канавки под установку уплотнений и направляющих колец выполняют по h9.

Шероховатость поверхности контакта – не выше Ra 0,8 мкм, что требует применения полировки или иных доводочных операций. Торцы поршня обрабатывают вплоть до Ra 2,5 мкм, канавки – Ra 1,25 мкм.

Принцип работы поршня

Главная задача поршня – восприятие давления газов в цилиндре и передача энергии давления через поршневой палец на шатун. Далее она преобразуется коленчатым валом в крутящий момент двигателя. Подобную задачу невозможно реализовать без надежного уплотнения поршня, который движется в цилиндре. В противном случае произойдет прорыв газов в картер и попадание моторного масла в камеру сгорания из него. Для решения этой проблемы в поршне предусмотрены канавки, в которых установлены компрессионные и маслосъемные кольца. Для отвода масла в поршне находятся специальные отверстия.

В процессе работы днище поршня напрямую контактирует с горячими газами и нагревается. Избыток тепла от днища к стенкам цилиндра отводят поршневые кольца и охлаждающая жидкость. В тяжелонагруженных агрегатах предусмотрено дополнительное масляное охлаждение: масло через форсунки подается на днище и во внутреннюю кольцевую полость поршня.

Чтобы уплотнение полостей поршня было надежным, его вертикальная ось должна совпадать с осью цилиндра. Перекосы недопустимы, так как они вызывают «болтание» поршня в цилиндре, снижают уплотняющие и теплопередающие свойства колец, а также увеличивают шумность работы двигателя. Для исключения подобных проблем служит юбка поршня. Она должна обеспечивать минимальный зазор как на холодном, так и прогретом агрегате.

Коэффициент расширения стенок цилиндра и самого поршня разные. Это обусловлено как разными конструкционными материалами, так и разницей в температуре нагрева. Чтобы нагретый поршень не заклинивало вследствие температурного расширения, существует два решения.

Первое – эллиптическая форма юбки поршня в поперечном сечении, где большая ось перпендикулярная оси пальца, а в продольном – конуса, который сужается к днищу поршня. Благодаря такой форме обеспечивается соответствие юбки нагретого поршня стенке цилиндра, что предотвращает заклинивание. Второе решение – заливка стальных пластин в юбку поршня некоторых моделей. При нагреве расширение металла происходит медленнее, что ограничивает расширение всей юбки.

В качестве конструкционного материала для производства поршней используется алюминий. Это обусловлено тем, что при высоких скоростях работы, которые характерны современным двигателям, нужно обеспечить малую массу движущихся деталей. Поэтому, если использовать более тяжелые металлы, то потребуются и более мощные компоненты: шатун, коленвал и блок с толстыми стенками. Все это сделает увеличит размер и вес силового агрегата.

В конструкции поршня могут быть реализованы и другие инженерные решения. Например, обратный конус, расположенный в нижней части юбки. Он служит для уменьшения шума из-за перекладки элемента в мертвой точке. Для улучшения смазывания юбки используется микропрофиль на рабочей поверхности, который представляет собой маленькие канавки с шагом 0,2-0,5 мм, а для снижения трения применяется антифрикционное покрытие.

В России покрытие для поршней выпускает . MODENGY Для деталей ДВС наносится на юбки поршней и другие детали двигателя: коренные подшипники коленчатого вала, втулки пальцев, распредвалов, дроссельную заслонку.

Покрытие способствует снижению трения и износа, предотвращает появление задиров на поверхностях и заклинивание поршня в цилиндре. Материал стоек к длительному воздействию моторного масла и в течение некоторого времени сохраняет работоспособность двигателя в режиме масляного голодания.

Полимеризация покрытия возможна как при комнатной температуре, так и при нагреве. Удобная аэрозольная упаковка упрощает процесс нанесения благодаря тщательно настроенным параметрам сопла распылительной головки.

Экстремальные условия обуславливают материал изготовления поршней

Поршень эксплуатируется в экстремальных условиях, характерными чертами которых являются высокие: давление, инерционные нагрузки и температуры. Именно поэтому к основным требованиям, предъявляемым материалам для его изготовления относят:

  • высокую механическую прочность;
  • хорошую теплопроводность;
  • малую плотность;
  • незначительный коэффициент линейного расширения, антифрикционные свойства;
  • хорошую коррозионную устойчивость.

Требуемым параметрам соответствуют специальные алюминиевые сплавы, отличающиеся прочностью, термостойкостью и легкостью. Реже в изготовлении поршней используются серые чугуны и сплавы стали. Поршни могут быть:

  • литыми;
  • коваными.

В первом варианте их изготовляют путем литья под давлением. Кованые изготовляются методом штамповки из алюминиевого сплава с небольшим добавлением кремния (в среднем, порядка 15 %), что значительно увеличивает их прочность и снижает степень расширения поршня в диапазоне рабочих температур.

Типы поршней

Не буду растягивать вступление, кратко расскажу, о чем будет этот большой пост. И так речь идет о типах поршней, четырех тактные бензиновые, дизельные и двух тактные, Основная задача всех рассмотренных типов поршней, это контролировать тепловое расширение и противостоять определенной нагрузке, ниже разберемся как это решается.

Поршни для четырехтактных бензиновых двигателей

В современных бензиновых двигателях используют поршни с симметричной или асимметричной юбкой с различной толщиной днища и юбки поршня.

Поршни управляемого расширения

Поршни с кольцевой вставкой, которая управляет тепловым расширением. Вставки выполнены из серого чугуна. Главная цель этого кольца уменьшить тепловое расширение алюминиевого сплава поршня, так как чугун имеет относительно небольшое расширение и малую теплопроводность, вставка тем самым сдерживает металл сохраняя форму. Производство таких поршней более затратное, соответственно и выше цена готового продукта. Основной недостаток, это невозможность изготовления кованного поршня, так необходимого для турбированых двигателей, большая масса поршня. Такой тип поршней больше уходит в далекое прошлое.

Авто термические поршни

Авто термические поршни, имеют разделение(пропил) между кольцевым поясом и юбкой в канавке маслосъемного кольца, юбка держится в районе бобышек. Это позволяет снизить теплопередачу от кольцевого пояса поршня к его юбке, тем самым достигается более стабильная форма юбки. Стальная вставка в районе бобышек, контролирует тепловое расширение и увеличивает прочность. Такие поршни не способны выдерживать огромные нагрузки из-за «пропила», в работе отличаются низким шумом и относятся к более современным типам.

Поршни Autothermatik

Действуют по такому же принципу, как и авто термические поршни, но не имеют пропила в маслосъемной канавке. Так же имеют стальные пластины в районе бобышек. Более прочные из-за целостности кольцевого пояса и юбки, лучше выдерживают боковые нагрузки по сравнению с первым вариантом. Применяются как в бензиновых, так и частично в дизельных двигателях.

Поршни Duotherm

Чем- то похожи на авто термические, но вместо пропила в юбке имеют стальную вставку по всему диаметру. Таким образом ограничивая температурный переход от кольцевого пояса к юбке и контролирую форму по всей окружности.

Поршни с перегородками

Этот тип поршней имеет большой холодильник и узкую часто овальную форму юбки. Поршень спроектирован так что при тепловом расширении он меняет свою форму из овальной в правильную круглую.

В дополнение к такому типу поршней еще есть вариант со скошенной юбкой к вершине поршня. имеет более широкую часть юбки снизу сужаясь к кольцевому поясу.

У поршней для двигателей с очень высокой выходной мощностью (больше, чем 100 кВт/л) может быть выполнен охлаждающий канал.

Поршни EVOTEC

Самый большой потенциал для того, чтобы уменьшить поршневую массу в четырехтактных бензиновых двигателях несут в себе поршни EVOTEC, в котором прежде всего стоит отметить трапециевидные поддержки бобышек, что позволяет расположить палец особенно глубоко, близко к днищу, сократив всю длину и массу поршня. В посте Масса поршня мы уже говорили о достоинстве такого расположения пальца. Такое расположение стенок юбки позволяет очень хорошо усилить верхнюю часть бобышек имея небольшую толщину перегородок и облегчить нижнюю выполнив поршень асимметричной формы. Юбка достаточно узкая и на краях имеет прочные перегородки, переходящие к бобышкам, это тоже является большим плюсом. Такая компоновка поршня очень хорошо препятствует боковым нагрузкам, мала вероятность деформации юбки, при этом толщина юбки намного меньше чем в обычном поршне, что тоже сокращает общий вес. На всем фоне отмеченных выше достоинств поршень значительно похудел, это позволяет сделать бобышки тоньше, так как инерционная нагрузка на нижние стенки бобышек стала меньше.

Кованные алюминиевые поршни

В двигателях с очень большими удельными нагрузками — такими как турбонадув или впрыск закиси азота используют кованные поршни. Преимуществом несомненно является прочность кованного алюминиевого сплава. Выдерживают более высокую температуру и лучше противостоят детонации. Из недостатков отмечается более высокая цена, невозможность применения некоторых технологий, например, некоторые из тех что описаны выше из-за технологического процесса изготовления.

Кованный поршень для Формулы 1

В следующем посте поговорим о поршнях для двухтактных и дизельных двигателей, где нагрузки и температуры еще больше. Поршни дизельных двигателей

Поршень, шатун, гильза двигателя — ЗИЛ-431410 (130):

111-1002024 111-1004020 120-1004022 130-1000101 130-1000101-02 130-1000104-02 130-1000106-01 130-1000108-А2 130-1002020-А2 130-1004015-А2 130-1004025-Р1 130-1004030-АР1 130-1004035-АР1 130-1004038 130-1004039 130-1004041-Р1 130-1004041-Р1 130-1004045 130-1004050 130-1004052 130-1004055 130-1004058-02 130-1004061 130-1004062-Б 130-1004064-Б 130-1004066

Перечень комплектующих от Поршень, шатун, гильза двигателя на ЗИЛ-431410 (130)

Схемы запчастей предназначены для справочных целей! Мы продаем не все запчасти от Поршень, шатун, гильза двигателя на ЗИЛ-431410 (130), представленные в этом списке. Если в правой колонке есть ссылка «Показать цены» — эти запчасти от «Поршень, шатун, гильза двигателя» есть в продаже. Наличие на складах по деталям с ценой смотрите в карточке товара. Если в правой колонке нет ссылки «Показать стоимость» — такие детали мы не продаем и заказы на них не принимаем.

Код детали Наименование Информация о детали Показать все цены

Технические характеристики

Мотор ЗИЛ 130 имеет форму V-образной восьмерки, которая часто применялась на советских грузовиках. Это считается третий двигатель по надежности, после ЯМЗ и КАМАЗ. Данный силовой агрегат также устанавливался на грузовики ГАЗ 53, как переделка, но широкого применения эта доработка не нашла.

Основные технические характеристики:

Наименования Характеристика
Завод выпуска Имени Ленина
Модель 130
Тип питания Бензин/Газ
Объем 6.0 литра (5969 см куб)
Мощностные характеристики 150 лошадиных сил
Количество цилиндров 8
Количество клапанов 16
Расход на 100 км, литров 32
Диаметр цилиндра 100
Степень сжатия 6,5 — 6,7
Впрыск Карбюратор
Охлаждение Жидкость

Сам корпус силового агрегата был выполнен из чугуна. Основная масса блоков цилиндра того времени исполнялась именно из этого материала, поскольку он был дешевый и легко обрабатывался. А вот головка блока уже была сделана с алюминия, а точнее легкого алюминия (в состав входил свинец и железо, но не более 1%).

В основном такие двигатели были предназначены для низкооктанового бензина А-76 или А-80. С удорожанием горючего, многие автопарки стали переводить эти моторы на газ, поскольку это было выгоднее с экономической стороны, даже при расходе в 40 литров пропана или бутана на каждые 100 км пробега.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Авто-мото
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: